How Can Polymer Strips Be Used to Clean Up Oil Spills?

2022-09-09 19:35:43 By : Ms. Anne DAI

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Across the world, the exploration and transportation of crude oil has transformed many sectors. Several approaches to averting the threat of pollution have been researched, and the application of polymer strips to clean up oil spills is a growing area of interest.

Image Credit: Tigergallery/Shutterstock.com

Oil spillage is one of the most prevalent anthropogenic causes of pollution that accompanies the exploration and usage of crude oil globally. In 2010, the world recorded the largest oil spill when an estimated 4.9 million barrels of crude oil engulfed the Gulf of Mexico. The continuing report of oil spills from sea accidents and the release of water-insoluble organic solvents such as benzene, dichloromethane, cyclohexane, and toluene into open waters continue to pose a severe threat to aquatic and human life.

Several remediation strategies, such as biological treatment, flotation, slag removal, and gravity separation, have been employed in remediating the accompanying challenges of crude oil explorations. All of these methods are classified into four categories as follows: i) mechanical recovery methods involving the use of sorbents, skimmers, and booms; ii) In-situ burning; iii) chemical treatments involving the use of solidifiers and dispersants, and iv) bioremediation. The most common limitations of these methods include high cost, environmental pollution (in-situ burning), incomplete separation, methodological difficulties, and low efficiency of the overall process.

Recent years have been marked by a convergence of efforts to develop improved remediation processes to find the most affordable, convenient, and practical approach to oil spill remediation. To date, physical adsorption (mechanical recovery) continues to lead in that race ahead of other methods as it is straightforward and eco-friendly. A significant factor determining the efficiency of physical adsorption is the choice of the sorbent material and its properties. An ideal sorbent should be highly oleophilic and hydrophobic at the same time. It should have high buoyancy and oil sorption capacity, and few materials can meet these requirements.

Ideal sorbents that have continued to generate much research interest are polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), aerogels, resins, foams, sponges, and polystyrene (PS) that have undergone the process of electrospinning to produce sorbents with improved surface-to-volume rations, higher oleophilic, and hydrophobic properties among others. In addition to the electrospinning method, other crucial components that affect the properties of the polymer strip include the choice of the adsorbent material. Porous polymeric composites have been reported to be an excellent choice owing to their high adsorption capacity, ease of preparation, and subsequent recycling.

While there are other methods for fabricating polymer strips at the nano and sub-micro scale, electrospinning is one of the most popular and versatile. This approach can be applied to various types of polymer sorbent materials, and the resulting strips can be modeled to exhibit novel and improved properties for effective clean-ups. Electrospinning involves melting the polymer serving as the sorbent and charging the melt through a spinneret to coagulate or solidify under a high-voltage electric field. This results in the formation of a filament or fibers. The type of polymer material and the concentration are also critical factors that dictate the morphology of the fabricated fibers upon the completion of the electrospinning process.

Meanwhile, with the increasing number of plastic wastes from both industrial and domestic uses, recycling these plastic wastes to produce useful sorbent materials for oil spill remediation is necessary. An estimated 380 million tons of plastic waste are produced globally, polluting the environment. This article reviews the recent trends in the applications of plastics as starting materials for polymer strips and how they have been employed in alleviating oil spillage.

With the increasing demand for a more efficient, convenient, cost-effective, and eco-friendly approach to cleaning up oil spills, many modifications and fabrication methods have been researched, applied, and documented. In a study published in ACS Omega, the authors investigated multifunctional oil absorption with macroporous polystyrene fibers incorporating silver-doped zinc oxide. Varying morphologies of silver-doped zinc oxide (Ag-ZnO and zinc oxide (Zn)) were added to the polystyrene fibers and spun using a solvent-induced phase separation technique. The addition of Ag-ZnO enhanced the pore size, thereby increasing its hydrophobic and oleophilic properties. The authors reported that the fabricated polymer strips showed qualitative and quantitative efficacy in oil spill remediation. In addition, while both materials showed antimicrobial activity against staphylococcus aureus, the polymer strip fabricated with Ag-ZnO showed higher efficacy.

In another study published by the Royal Society of Chemistry, the authors prepared a porous superhydrophobic foam using waste plastic and applied it for oil spill clean-up. A one-step High Internal Phase Pickering Emulsion (HIPPE) fabrication technique was used, resulting in a highly stabilized emulsion that exhibits excellent superhydrophobicity, superoleophilicity, and multi-order porosity. Upon application, the results were fantastic, as the fabricated superhydrophobic foams showed a high adsorption capacity of 20.4 – 58.1 g/g. The process was fast and selective, and the foams only showed a 1% decline in their adsorption capacity after ten cycles.

In another study in the journal SN Applied Sciences, a ternary system oleophilic-hydrophobic membrane was prepared by electrospinning for an efficient gravity-driven oil-water separation system. The authors explored the use of composite nanomaterials to prepare a novel ternary mixture system that consists of cellulose acetate (CA), polystyrene (PS), and polyvinylidene fluoride (PVDF). The choice of degradable cellulose was to promote compatibility between the two polymer layers and enhance pore formation, while PVDF boosts the mechanical properties. The resulting composite material was subjected to oil/water separation tests, and the results showed that the fabricated components had superior mechanical properties, high oil flux, and separation efficiency.

Mechanical recovery involves the use of sorbents, and this is one area that continues to attract much interest for many reasons. This approach allows for novel modifications that include the choice of fabrication methods (electrospinning or High Internal Phase Pickering Emulsion (HIPPE) fabrication), plastic material, and other additives to achieve the desired physical properties for effective clean-up.

With the continuing exploration and transportation of crude oil across different parts of the world, the need for a holistic, efficient, convenient, and eco-friendly remediation approach cannot be over-emphasized.

More from AZoM: What is Glow Discharge Optical Emission Spectrometry?

Ali. A., et al. (2021). Multifunctional Oil Absorption with Macroporous Polystyrene Fibers Incorporating Silver-Doped ZnO. ACS Omega, 6, 8081-8093. https://pubs.acs.org/doi/pdf/10.1021/acsomega.0c05683

Li, S., & Lee, B. K. (2022). Facile generation of crumpled polymer strips by immersion electrospinning for oil spill clean-ups. Journal of colloid and interface science, 626, 581–590. Advance online publication.

https://www.sciencedirect.com/science/article/abs/pii/S0021979722011559

Wang, L., Dai, S., Lie, X., Wang, X. and Lu, H. (2019). A ternary system oleophilic-hydrophobic membrane prepared by electrospinning for efficient gravity-driven oil-water separation. SN Applied Sciences, 1(797). https://doi.org/10.1007/s42452-019-0805-9.

https://link.springer.com/article/10.1007/s42452-019-0805-9

Isık, T., & Demir, M. M. (2018). Tailored electrospun fibers from waste polystyrene for high oil adsorption. Sustainable Materials and Technologies, e00084. doi:10.1016/j.susmat.2018.e00084

https://www.researchgate.net/publication/328853871_Tailored_electrospun_fibers_from_waste_polystyrene_for_high_oil_adsorption

Yu. C., et al. (2019). Preparation of a porous superhydrophobic foam from waste plastic and its application for oil spill clean-up. Royal Society of Chemistry Adv., 9. 

https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra06848a

Ge. J., et al. (2016). Advanced Sorbents for Oil-Spill Clean-up: Recent Advances and Future Perspectives. Adv. Mater.  http://dx.doi.org/10.1002/adma.201601812

https://www.researchgate.net/publication/309119968_Advanced_Sorbents_for_Oil-Spill_Cleanup_Recent_Advances_and_Future_Perspectives

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Franklin is an industry-experienced analytical chemist with vast experience in pharmaceutical quality control and quality assurance employing current analytical tools and current good manufacturing practices (cGMP) to ensure consistency in product quality as per regulatory requirements. He has a master's degree in analytical chemistry and is a passionate writer with a strong ability to put words together to make sense just like balancing a chemical reaction to get the desired products. Franklin spends time playing football with friends when he is not writing or learning new things. When he is not playing, he is relaxing and watching Manchester United play against other teams.

Please use one of the following formats to cite this article in your essay, paper or report:

Nwuga, Franklin. (2022, August 08). How Can Polymer Strips Be Used to Clean Up Oil Spills?. AZoM. Retrieved on September 09, 2022 from https://www.azom.com/article.aspx?ArticleID=21936.

Nwuga, Franklin. "How Can Polymer Strips Be Used to Clean Up Oil Spills?". AZoM. 09 September 2022. <https://www.azom.com/article.aspx?ArticleID=21936>.

Nwuga, Franklin. "How Can Polymer Strips Be Used to Clean Up Oil Spills?". AZoM. https://www.azom.com/article.aspx?ArticleID=21936. (accessed September 09, 2022).

Nwuga, Franklin. 2022. How Can Polymer Strips Be Used to Clean Up Oil Spills?. AZoM, viewed 09 September 2022, https://www.azom.com/article.aspx?ArticleID=21936.

Do you have a review, update or anything you would like to add to this article?

Dave Cist, Roger Roberts and Rob Sommerfeldt

In this interview, AZoM talks to Dave Cist, Roger Roberts, and Rob Sommerfeldt from GSSI about the Pavescan RDM, MDM, and their ground penetrating radar (GPR) capabilities. They also discuss how this can aid the asphalt production and laying processes.

Following the Advanced Materials Show 2022, AZoM spoke with Cameron Day from William Blythe about the broad scope of the company and its goals for the future.

At the Advanced Materials Show 2022, AZoM caught up with the CEO of Cambridge Smart Plastics, Andrew Terentjev. In this interview, we discuss the company's novel technologies and how they could revolutionize how we think about plastics.

The CVD Diamond from Element Six is a high purity synthetic diamond that is used for electronic thermal management.

Discover the CNR4 Net Radiometer, a powerful tool that can measure the energy balance between short-wave and long-wave Far Infrared radiation.

The Powder Rheology Accessory expands TA Instruments’ Discovery Hybrid Rheometer (DHR) capabilities to powders, enabling characterization of behaviors during storage, dispensing, processing, and end use.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022